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ON CENTRAL LIMIT THEOREMS IN GEOMETRICAL
PROBABILITY

By FLORIN AvRAM! AND DIMITRIS BERTSIMAS?
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We prove central limit theorems and establish rates of convergence
for the following problems in geometrical probability when points are
generated in the [0,1]? cube according to a Poisson point process with
parameter n:

1. The length of the nearest graph N, ,, in which each point is connected
to its kth nearest neighbor.

2. The length of the Delaunay triangulation Del, of the points.

3. The length of the Voronoi diagram Vor, of the points.

Using the technique of dependency graphs of Baldi and Rinott, we show
that the dependence range in all these problems converges quickly to 0
with high probability. Our approach also establishes rates of convergence
for the number of points in the convex hull and the area outside the
convex hull for points generated according to a Poisson point process in a
circle.

1. Introduction. In a pioneering paper by Beardwood, Halton and
Hammersley [5] and continued in Steele [15], it was shown that the lengths
L, of several combinatorial optimization problems (the traveling salesman,
minimum matching, minimum spanning tree, minimum Steiner tree, etc.)
satisfy laws of large numbers when their input consists of n random i.i.d.
points X,, £ = 1,..., n, in the cube [0, 1]%.

It is also believed (see, e.g., Steele [16]), but yet unknown, that they satisfy
central limit theorems (CLTs), because although the edges of the foregoing
optimal graphs are not independent, the dependence “seems to be local.” In
trying to make this intuitive idea precise, we succeeded in proving CLTs for
the length of three graphs, which are among the most fundamental construc-
tions in computational geometry (see, e.g., Preparata and Shamos [13]). In
the following definitions the length of a graph is defined to be the sum of the
lengths of its edges. The three graphs are:

1. The length N, , of the kth nearest graph, in which each point is connected
to its kth nearest neighbor.
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1034 F. AVRAM AND D. BERTSIMAS

2. The length Vor, of the Voronoi diagram of the points, which is the
collection of Voronoi cells for each point. Given a collection of points, a
Voronoi cell around a point O is the set of all points that are closer to O
than to any other point (see Figure 1, dotted lines).

3. The length Del, of the Delaunay triangulation of the points, which is the
graph defined on the given points with an edge between them if they are
Voronoi neighbors (see Figure 1, solid lines). Assuming that no three
points are collinear and no four points lie in the same circle, which
happens with probability 1 if the points are generated according to a
Poisson point process, this graph is indeed a triangulation; that is, a
subdivision of the convex hull of points in triangles.

Both the Voronoi diagram and the Delaunay triangulation are fundamen-
tal constructions in computational geometry because many algorithms for
solving geometrical problems are based on them. In particular, the Delaunay
triangulation is quite important for the minimum spanning tree (MST)
because it contains the MST as a subgraph; that is, points that are neighbors
in the MST must also be Voronoi neighbors (see Figure 2). This property
leads to an efficient algorithm for the MST in the plane because one first
constructs the Delaunay triangulation in O(n log n) time and then runs the
greedy algorithm on its graph, leading to an O(nlog n) algorithm for the
MST as well (see, e.g., Preparata and Shamos [13]).

We believe that our results give some partial insight on why a CLT might
hold for the MST as well. Ramey [14] has attempted to prove a CLT for the
MST, but his approach, although very interesting, did not succeed because he
needed some unproven, but plausible, lemmas from continuous percolation.

The CLT for N; , has already been obtained by Bickel and Breiman [6],
who used complicated fourth moment estimates. They wrote: “Our proof is
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FiG. 1. The Voronoi diagram and the Delaunay triangulation.
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F1G. 2. The MST is a subgraph of the Delaunay triangulation.

long. We believe that this is due to the complexity of the problem. Nearest
neighbor distances are not independent.” We used instead a simple condition-
ing argument that establishes that the problems exhibit finite dependence. In
addition, the current approach not only leads to CLTSs, but it establishes rates
of convergence.

Our results are established for the Poisson model, which is defined as
follows.

PoissoN MODEL. Let X;, i =1,..., N,, be the points of a Poisson process
with intensity n on R? that lie in a two-dimensional cube [0, 1]%, so that N,
is a Poisson random variable with mean n.

This article is structured as follows. Section 2 contains the proof of our
main result that for all three problems,

L, - E[L,] .
|tz == -0

where ®(x) is the cumulative distribution of a standard N(0, 1) normal. We
also establish that the rate of convergence is

lim P

n—ow

[T BLLY || (g )

Moreover, we remark that our approach obtains the rate of convergence for
the CLTs on the number of points in the convex hull (obtained by Groene-
boom [8]) and the area outside the convex hull (obtained by Hsing [9]) for
points generated according to a Poisson process of rate n in a circle.
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It is well known that the expected lengths E[L,] of the kth nearest
neighbor graph, the Delaunay triangulation and the Voronoi diagram in the
two-dimensional cube [0, 1]® satisfy

. E[L,]
r}l—r»l:o 7z A
The constants B have been explicitly computed by Miles [11], which is in
sharp contrast with the problems studied in references 5 and 15 with the
exception of the MST constant that we calculated recently [1]. We review the
relevant results in Section 3. In the final section we include some concluding
remarks and discuss some open questions.

2. Central limit theorems. In this section we prove CLTs for the three
problems we consider. We first outline the methodology and comment on its
applicability to other combinatorial problems.

2.1. Intuitive idea. We identify a certain event A,, such that P{A,} — 1,
whose occurrence implies independence of the configuration at points that are
distant enough. More precisely, there is a cutoff distance, such that if the
event A, happened, then deterministically, the configuration around a given
point is not influenced by that of points further than the cutoff distance.

For all three problems, A, is the event that, in the subdivision of [0, 1]?
into O(n/log n) equal subcubes, each subcube contains at least one and at
most O(log n) points of the Poisson process. If all the neighboring subcubes
around a point are nonempty, then only a finite number of them determine
the kth nearest neighbors or the Voronoi neighbors of a point. Thus, condi-
tioned on the event A,, the three problems exhibit “m-dependence” (at the
subdivision level) for some finite m. Applying the theory of dependency
graphs [3] yields the CLTs.

As mentioned in the introduction, our approach was inspired by the Ph.D.
thesis of Ramey [14], who attempted a similar approach for the minimum
spanning tree. In order to see how our approach might generalize to the MST,
consider the event B, , that there exist two points that are Voronoi neigh-
bors and lie at some distance [ of each other, but can also be connected by a
chain of edges that are all shorter than [, and the shortest such chain
between the two points use more than % edges for some large k. Two such
points will not be neighbors in the MST and the decision not to connect them
is affected by the position of far away points. Let B, , be the complement of
the event B, ,.

Conditioning in this case on A, N B, , makes the problem m-dependent
with m finite and thus shows that if P{Bn, z} = 0 as n — =, the CLT for the
MST follows (modulo some technicalities). Further analogies with continuous
percolation make the preceding hypothesis quite plausible, even though a
rigorous proof has not been submitted.

To summarize, in the nearest neighbor, the Voronoi diagram and the
Delaunay triangulation we will establish the event whose probability tends to
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1 and that implies finite range dependence and thus the CLT. In contrast, for
the MST we know the event, but we cannot show its probability tends to 1.
Finally, for the traveling salesman and minimum matching problems we
have not identified an event whose probability tends to 1 and which implies
finite range dependence and thus the CLT.

2.2. Dependency graphs. The fundamental concept that captures the idea
of local dependence is that of dependency graphs. Introduced in Petrovskaya
and Leontovitch [12] and applied to several problems by Baldi and Rinott [3,
4] dependency graphs are defined as follows: Let X, a € V, be a collection of
random variables. The graph G = (V, E) is said to be a dependency graph for
X, if for any pair of disjoint sets A;, A, C V such that no edge in E has one

endpoint in A, and the other in A,, the o-fields o{X,, a € A} and o{X,,
a € A,} are mutually independent.

THEOREM 1 (Baldi and Rinott [4]). Let {X,,,a € V,} be random vartables
having a dependency graph G, =(V,,E,), n > 1. Let S, = Yoev X =

an?’

Var] S, ] < «. Let D, denote the maximum degree of G, and suppose | X, l < B,
for a constant B, almost surely for all a € V. Then
S, —E[S, IDZB3 Ve
(1) P{——————[—] } ®( x) <32(1+\/“)( ,
where |V,| is the cardinality of V,. Thus, if (\V,|D2B})/0,} = 0 as n — o,
S, - E[S,]
Zr el L 0,1).

n

2.3. The CLT. Let X,,i=1,...,N,, be the points of a Poisson process
with intensity n on R? that lie in a two-dimensional cube [0, 1], so that N,
is a Poisson random variable with mean n. Let L, be the length of the graphs
N, ., Del, or Vor,. We subdivide the cube [0, 1]? into a set C of m? subcubes
of equal size with m = |(n/(c log n))/?] with ¢ > 5/4. Let A = n/m? Be-
cause we selected m = [(n/(c log n))*/2], we have that

n 1/2 n 1/2
—1<mc< .
(clogn) (clogn)

The left inequality leads to (n /(¢ log n))/2 < m + 1 < 2m; thatis, A = n/m?
< 2%¢log n. The right inequality leads to A = n/m? > c log n.

The subcubes will be denoted by indices i = (iy,...,i,), where each i;
takes value from 1 to m. We decompose the total length L, as

= Z Li,n’

ieC

where L, , is the sum of all edges with both ends in the subcube i plus the
sum of the portion of the edges within the subcube with only one endpoint in
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the subcube i. Let N; , be the number of points falling in the cube i. Let A,
be the event that each subcube is nonempty and contains less than or equal
to [eA] points; that is,

AIL = niec{l SNi,n < [e)\]}.

We first show the following lemma.

LEMMA 2.
lim P{A,} = 1.

n—ow

ProoF. It is easy to check that
P{1<N;,<[eAl}>1-2e?,
so by the independence of the NV; , we have
(2) (1-2e")™ <P{A,)} < 1.

Taking limits and using A > clog n, ¢ > 5/4 we obtain the lemma. O

We introduce now a distance between subcubes i and j:

d@i,j) = jmax {li, —Jj.l}.

<r<2
Let
S;r=1{i€C:d(i,j) <R};
that is, S; ; denotes the sphere of subcubes of radius R around i. Moreover, if
A, B are two sets of subcubes, we let

SA,R = U Si,R,
icA
A, B) = i i,j).
WLE) = Rt

The following proposition is the heart of our development of the CLT and
captures the idea of “local dependence” in the three problems we consider.

PROPOSITION 3. There exists a fixed number R such that, conditionally on
the event A,, for any pair of sets of subcubes A, B with d(A, B) > R, the
o-fields o{L; ,, i € A} and o{L, ,, i € B} are independent.

Proor. Let X, be the location of point v and let X; denote the set {X,,
X, € i}; that is, the set of points in a subcube. We note first that the point
process on [0, 1]%, obtained from the Poisson point process by conditioning on
A, will retain the property that X; will be independent.

For ease of exposition in the % nearest neighbor graph we present the case
k=1

For the nearest neighbor graph (k = 1), we prove the proposition with
R = 4. Note first that if point X € i is the nearest neighbor of Y € jor Y € j
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is the nearest neighbor of X € i, then d(i,j) < 2 because if d(i,j) > 3, then a
point in a subcube at distance 1 from i is guaranteed to be closer than Y (see
also Figure 3).

Moreover, the nearest neighbor of X € i belongs in one of the subcubes in
S; » and its identity is in no way affected by any point outside S; ,. Note that
the analog of this property fails to hold for the minimum spanning tree,
matching and traveling salesman problems. However, conditionally on the
event A, {L; ,, i € A} is some function' AX;, i € S, ,} and similarly {L; ,,
i € B} is some function AX;, i € Sy ,}. Because d(A, B) > 4 implies that
S, 2, Sp o are disjoint and because X; are independent, the proposition
follows. Similarly, a finite number D can be found such that the distance
between any point and its kth nearest neighbor is smaller than D, yielding
R =2D.

We now turn our attention to the Delaunay triangulation and the Voronoi
diagram, which have the same R. Arguing as before, the Voronoi polygon of a
point X € iis included in the sphere S; , because the Voronoi polygon of X is
the set of points that are nearer to the point X than any other point Y. Thus,
if X €iand Y €j are Voronoi neighbors, then d(i,j) < 4 because the mid-
point of X and Y belongs to the Voronoi polygon of both. In fact, d(i,j) < 3
because if d(i,j) > 4, then any. circle through X, Y has to contain a full
subcube r, where a point Z lies (because all subcubes are nonempty), and
thus X, Y cannot be Voronoi neighbors.

The decision as to which of the points of the Poisson process belonging in
subcubes in the sphere S; ;, are Voronoi neighbors of X € i is in no way
affected by any point of the Poisson process outside S; ,. Thus, arguing as in
the nearest neighbor case, R = 6 is sufficient to prove the proposition. O

To apply Theorem 1, we need an upper bound on the length of L; ,; this is
provided in the following proposition.

ProposITION 4. Conditionally on the event A, there exists a constant h

such that
)\1 +1/2

(3) Lin<h—i5

Proor. For each of the three problems studied, every distance is at most
the length V2 /m of the diagonal of the subcube and there are at most uN; ,

Nearest neighbor

\
' \/\ : Y

F16.3. X, €1, X, € j cannot be the nearest neighbors of each other if d(i,j) > 3.
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edges, where the constant u depends on the problem. For the nearest
neighbor there are N, , edges, whereas for the Voronoi diagram and the
Delaunay triangulation there are 3NN, , — 6 edges; see reference 13. There-
fore, we have

V2

. <uN, , —.

L.
1L,n m

Given the event A,, N; , <[eAl, that is, N; , <[eA] — 1 < eA, and because
m = (n/M)Y?2, we obtain (3), with & = uey2. O

Finally, in order to apply Theorem 1 we need a lower bound on the
variance of L,. This is provided in the following proposition.

PROPOSITION 5. There exists a constant f > 0 such that
Var[L,] = f.

PrOOF. We subdivide the cube [0, 1]? into g2 equal parts with ¢ = [Vn 1.
We identify a particular configuration that has a strictly positive probability
and constant variability. We describe the construction for the nearest neigh-
bor graph. Let ¢ = 1/8Vn . Consider all the subcubes that have the following
properties:

(i) They contain exactly two points inside a circle centered at the center of
the subcube and radius &, and no other points in the subcube.

(ii) For subcubes that do not touch the boundary, a ring of points exists
outside but near the boundary of the subcube, each at most V5 & from another
such point. In particular, we demand that all the 36 smaller subcubes of
dimension & that surround the initial subcube be nonempty (see Figure 4).
For subcubes that touch the boundary on one edge (not corner subcubes), we
ask that all 26 smaller subcubes of dimension & that surround the initial

®

T I T I T T T

F1G. 4. The configuration for the nearest neighbor graph.
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subcube be nonempty. Finally for subcubes that touch the boundary on two
edges (corner subcubes) we ask that all 17 smaller subcubes of dimension &
that surround the initial subcube be nonempty.

Note that no point outside such a subcube has a nearest neighbor inside
(because its distance to a point inside is at least 3¢ and there are points
outside within V5 £). Moreover, the two points inside the circle are nearest
neighbors of each other. Their distance D has a certain variance oe? (o is
easily computable because it is the variance of the distance of two random
points in a circle of radius 1). For subcubes that do not touch the boundary,
the probability of such a configuration is p = exp(—nme?)(nme?)?/2) X
exp(—n(1/q? — me?))(1 — e ¢3¢ > exp(—nmwe2X(nme?)?/2exp(—n(l/n —
me?))1 — e "6 = 3.1779 X 107 > 0, because n < q% (¢ = [Vn ] and ne?
= 1/64. Similarly, for subcubes that touch the boundary in one or two edges,
the corresponding probabilities are p, and p,. Obviously p, > p; > p.

Let K be the number of subcubes I = {i,, ..., ix} that satisfy the preceding
two properties. Then, because there are four corner subcubes, 4(g — 2) sub-
cubes that touch the boundary in one edge and (¢? — 4(q — 1)) that do not
touch the boundary, E[K] = (q%? - 4(¢ — D)p + 4(q — 2)p, + 4p, > pq?,
because p, > p; > p. Let F, be the o-algebra determined by the random set
{i1,...,ix} and by the positions of all the points lying outside the K subcubes.
Then,

Var[L,] = Var[E[L,|F,]] + E[Var[L,I|F,]] = E[V[Zd ’ Zd'F”
opq® op

>— >0,
64n 64

- E[ Y Var| di]] - 0s2E[K] >

iel

where d; is the sum of all the distances to their nearest neighbor of the
points inside a subcube i. Letting f = o p/64 proves the proposition for the
nearest neighbor graph.

For the k-nearest graph the construction is similar except we require that
there be k£ + 1 points inside the circle, so that all 2 nearest neighbors are
inside the circle and each of the outside subcubes contains & + 1 points.

For the Voronoi diagram and the Delaunay triangulation we consider all
subcubes with the following properties: They contain exactly one point inside
a circle with center the center of the subcube and radius /2 and exactly
three points inside a second circle of radius &, and no other points in the
subcube. The three points in the second circle are located as follows: We
subdivide the circle into six equal sectors. The three points are located in
alternate regions. As in the nearest neighbor graph, a ring of points exists
outside the boundary at distance at most V5 & from each other. The probabil-
ity of such a configuration is py > 0 for subcubes not touching the boundary
and larger than p, for subcubes that touch the boundary. Note that the point
inside has as Voronoi neighbors only the three points in the outside circle.
Fixing the position of the three points in the outside circle, there is a certain



1042 F. AVRAM AND D. BERTSIMAS

variability oy /n, op/n for the Voronoi polygon and its Delaunay triangula-
tion of the point inside for some constants oy, op,. Letting T be the number
of subcubes I satisfying the foregoing two properties, we let U, be the
o-algebra determined by the random set {i,, ..., iy} and by the positions of all
the points lying outside the 7' subcubes and inside the larger circle. Then,

Var[L,] = Var[E[L,IU,]] + E[Var[L,IU,]] = E[Var[ Yd, + ¥ diIUn”
iel iel
= %E[T] =oypy >0,

where d; is the sum of the Voronoi polygon (Delaunay triangulation) of the
inside point. O

We now have all the ingredients to prove the CLT.

THEOREM 6. The length L, of the k nearest neighbor graph, the Voronoi
diagram and the Delaunay triangulation satisfies the CLT
L n E [ L n]

(4) lim P VaTL]

Sx} =®(x),

where ®(x) is the standard normal cumulative distribution function. More-
over, we have

_ NS
(5) {Ln E[L,] (log n) )

\/T—I?n_]__ Sx} —¢(x)| =O(——n—l/—4— .

Proor. We first establish that conditionally on the event A, the random
variable (L, — E[L,]/ \/Var[ L,] is asymptotically normal. Indeed, we de-
fine a dependency graph G, = (V,, E,) in the sense of Section 2.2. The set V,
consists of the subcubes i (|V,| = m?), whereas an edge (i,j) € E, if d(i,j) < R,
where R is defined in Proposition 3. The maximal degree D, of this depen-
dency graph satisfies D, < (2R + 1)2 — 1, from Proposition 3. In addition,
B, < h(A'*1/2 /n1/2) from Proposition 4 and Var{L,] > f from Proposition 5.
Applying Theorem 1 and using m? = n /A, we obtain

V,ID2B}  m2((2R + 1)° — 1) [Ra* V2 120 pres
=2z

Var[ L]~ 7 n77
n
where z is a constant. Because A < 2%c log n for some ¢ > 5/4, we obtain
\V,|D2B? [22¢ log n]*" %/
32 = U 12 -0
Var[ L, ] n

as n — «, Applying now Theorem 1, we have established that conditionally
on the event A,, (L, — E[L,]/+/Var[ L,] is asymptotically normal N(0, 1).
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We now need to show that the unconditional random variable U, = (L, —
E[L,D/y/Var[L,] is asymptotically normal. However,

P{U, < x} = P{U, < x|A,)P{A,} + P{U, < x|A,}P{A,}.

Taking limits and using Lemma 2 and the asymptotic normality of U, given
the event A, we establish (4).
To establish the rate of convergence,

|P{U, < x} — ®(x)| < P{A,}|P{U, < x|A,)
— ®(x)l+ P{AL}IP{U, < x|A}} — ®(x)l.
Applying (1) and (2) we obtain

AL+3/4 .
IP{UnSx} —d)(x)lsO(—nT/T) +(1—(1—2e“) )

Because A > clog n and ¢ > 5/4, we have

1+3/4
IP(U, < x) — ®(x)| < o(m—) + (1 - eXp(_;__z_))

nl/4 n°~llogn

0( (log n)1+3/4 )

/4

(]

REMARK 1. One might ask whether the rates of convergence (5) that our
method gives are the best possible. In our derivation of the rates we
chose A = O(og n). This is the best choice of A because in order for
lim, ., P{A,} = 1in Lemma 2, we need A > clog n. If A grows more slowly
than log n, then lim, ,, P{A,} = 0 and our method fails. We suspect, how-
ever, that the logarithmic terms that appear in (5) are not essential but
rather a by-product of the method; that is, we conjecture

IP(U, <x} — ®(x)| < 0(5/_4)'

REMARK 2. One advantage of the Baldi and Rinott [4] dependency graph
theorem is that it yields rates of convergence. For another application of the
theorem, we consider the two CLTs for the number of points in the convex
hull and for the area outside the convex hull of points generated according to
a Poisson process of intensity n in a circle of radius 1, obtained by Groene-
boom [8] and Hsing [9], respectively. Their approach is similar to ours and is
equivalent to dividing the circle into equal sectors S; of angle 6,, where 6, is
chosen such that each slice R;, i = 1,...,27/6,, bounded on one side by the
circle and on the other side by the chord connecting two consecutive partition
points, contains an expected number of clog n points. The area of R, (see
Figure 5) can be calculated as the difference of the area of the sector S; and
the area of the triangle AOB, which is (6, — sin 6,)/2 < 6 /12 because
sin 6, > 6, — 6°/3!. Therefore, because the area of R; is O(6;), we obtain
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F16. 5. The partition for the convex hull problem.

that 6, = O((log n/n)"/3). Then c is chosen so that the probability that all
these slices contain at least one point and at most 2¢ log n points converges
tolas n — o

The key observation is that conditioned on all the slices being nonempty,
both the number of vertices in the part of the convex hull lying in a sector S,
and the area outside the convex hull, inside a sector S;, depend only on the
configuration of points inside the sectors S;_,, S;, S,, ;. This implies that the
dependency graph between the parts X; of the convex hull lying in the sector
S; has degree D, = 4. Using the formula for the rate from Theorem 1,
r, = (V,IDZB2 /a2, with |V,|=2m/0,, o, =0(n"%) (Theorem 3.4 of
Groeneboom [8]), B, = O(log n) for the number of points in the convex hull
and |V,| = 27/6,, 0, = ©(n~5/6) (Theorem 8.1 of Hsing [9]), B, = 0(6?) for
the area outside the convex hull, we obtain the rate of convergence of

r, = O((log n)4/3/n1/12)

for both the number of points in the convex hull and the area outside the
convex hull.

REMARK 3. Another advantage of Theorem 1 is that it only requires
bounding the variance below and thus can be used in problems where the
exact computation of the variance is not available.

3. Expected lengths. In this section we briefly review the known re-
sults for the expected lengths of the graphs we considered.

THEOREM 7 (Miles [11]). The expected length of the k nearest neighbor
graph N, , satisfies

o FIEND] 1 R TG+ -1)
n—o n1/2 2771/2j=1 (J—].)'
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The expected length of the Voronot diagram Vor, and the Delaunay triangula-
tion Del, satisfies

 B[L(Vor)]
nl—{rolcT= ’
 E[L(Del,)] 32
r}l—I}}c nt/? T 3

For direct geometric proofs of these results the reader is referred to Avram
and Bertsimas [1].

4. Concluding remarks. Our approach generalizes easily in dimension
d for the lengths of the & nearest neighbor graph and the Delaunay triangu-
lation. The rate of convergence in this case becomes

L,-E[L,] (log n)' 3/ )

Pl yl - a(x) = Of o —
P\ Watzy =%~ 0( n'/t

The CLTs were established for the Poisson model. It would be desirable to
establish the CLTs for the usual Euclidean model, in which n points X,
i =1,...,n, are uniformly and independently distributed in a d-dimensional
cube [0, 1]4.
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